Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrakis[1-phenyl-3-(1H-1,2,4-triazol-1 $vl - \kappa N^4$) propan-1-one] bis(thiocyanato*κN*)manganese(II)

Hua Cai,* Ying Guo and Jian-Gang Li

College of Science, Civil Aviation University of China, Tianjin 300300, People's Republic of China Correspondence e-mail: caihua-1109@163.com

Received 8 November 2010; accepted 14 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.089; data-to-parameter ratio = 13.4.

In the mononuclear title complex, $[Mn(NCS)_2(C_{11}H_{11}N_3O)_4]$, the Mn^{II} atom, lying on an inversion center, is coordinated by two monodentate thiocyanate anions and four monodentate 1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one ligands in a distorted octahedral geometry. Each complex molecule is linked to four neighboring ones by weak $C-H \cdots N$ and C- $H \cdots S$ hydrogen bonds, forming a two-dimensional sheet parallel to (001).

Related literature

For general background to self-assembly of supramolecular systems, see: Beatty (2003); Braga et al. (2003). For a related structure, see: Guo & Cai (2007).

Experimental

Crystal data [Mn(NCS)₂(C₁₁H₁₁N₃O)₄]

 $M_r = 976.03$

Triclinic, P1	$V = 1166.1 (5) \text{ Å}^3$
a = 7.9326 (17) Å	Z = 1
b = 11.845 (3) Å	Mo $K\alpha$ radiation
c = 13.740 (3) Å	$\mu = 0.43 \text{ mm}^{-1}$
$\alpha = 69.240 \ (3)^{\circ}$	T = 293 K
$\beta = 75.417 \ (3)^{\circ}$	$0.20 \times 0.18 \times 0.14 \text{ mm}$
$\gamma = 81.686 \ (3)^{\circ}$	
Data collection	
Bruker APEXII CCD	6410 measured reflections
diffractometer	4075 independent reflections

unnactometer	4075 independent reneetions
Absorption correction: multi-scan	2840 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.021$
$T_{\rm min} = 0.919, \ T_{\rm max} = 0.942$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	304 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
4075 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline C12-H12\cdots N2^{i}\\ C18-H18\cdots S1^{ii} \end{array}$	0.93	2.62	3.436 (3)	146
	0.93	2.82	3.725 (3)	164

Symmetry codes: (i) x - 1, y, z; (ii) x, y + 1, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL.

We acknowledge financial support by the Special Fund for Central Universities (ZXH2009D011), the Natural Science Foundation of Tianjin (09JCYBJC04200), the National Natural Science Foundation of China and the Civil Aviation Administration of China (grant No. 61079010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2378).

References

Beatty, A. M. (2003). Coord. Chem. Rev. 246, 131-143.

Braga, D., Maini, L., Polito, M., Tagliavini, E. & Grepioni, F. (2003). Coord. Chem. Rev. 246, 53-71.

Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Guo, J.-H. & Cai, H. (2007). Acta Cryst. E63, m1322-m1324.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, m1605 [doi:10.1107/S1600536810047112]

$Tetrakis [1-phenyl-3-(1H-1,2,4-triazol-1-yl-\kappa N^4) propan-1-one] bis (thiocyanato-\kappa N) manganese (II)$

H. Cai, Y. Guo and J.-G. Li

Comment

Self-assembly processes directed by either hydrogen-bonding interactions or metal coordinations have been extensively utilized in crystal engineering to construct supramolecular systems with novel structures and properties due to their inherent strength and reliability (Braga *et al.*, 2003). Proper selection of metal ions and ligands with suitable functionalized groups is the key issue in designing and self-assembling of coordination supramolecules (Beatty, 2003). Recently, we have initiated a research program of synthesizing supramolecules based on pseudohalide and flexible ligand, which consists of a propanone unit substituted with an imidazole and a phenyl group (Guo & Cai, 2007). To further explore this series, we synthesized the title compound, a new Mn^{II} complex based on the mixed ligands, thiocyanate and 3-(1H-1,2,4-triazol-1-yl)-1-phenyl-propan-1-one (*L*).

In the molecular structure (Fig. 1) of the mononuclear title complex, the Mn^{II} atom is six-coordinated by four monodentate *L* ligands, forming the equatorial plane and two N atoms from two monodentate NCS⁻ anions in the axial positions, displaying an MnN_6 octahedral geometry. The triazol and phenyl rings in each of the ligands are not coplanar. The dihedral angels formed by the least-squares planes of the phenyl and triazole rings are 53.8 (2) and 69.6 (2)°. In the crystal, weak intermolecular C—H···N and C—H···S hydrogen bonds (Table 1) connect the complex molecules into a two-dimensional supramolecular sheet parallel to (0 0 1), as shown in Fig. 2.

Experimental

 $MnCl_2.4H_2O$ (19.8 mg, 0.1 mmol), 3-(1*H*-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (22.3 mg, 0.1 mmol) and NH₄SCN (7.6 mg, 0.1 mmol) were mixed in a CH₃CN/H₂O (20 ml, v/v 1:1) solution with vigorous stirring for *ca* 30 min. The resulting solution was filtered and left to stand at room temperature. Colorless block crystals of the title compound suitable for X-ray analysis were obtained in a 60% yield by slow evaporation of the solvent over a period of one week. Analysis, calculated for C₄₆H₄₄MnN₁₄O₄S₂: C 56.61, H 4.54, N 20.09%; found: C 56.45, H 4.43, N 20.12%.

Refinement

Although all H atoms were visible in difference Fourier maps, they were finally placed in geometrically calculated positions and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (methylene) Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the 30% probability ellipsoids. [Symmetry code: (A) -x, -y, 2-z.]

Fig. 2. The two-dimensional sheet structure of the title compound, showing C—H…N and C—H…S hydrogen bongs as red and green dashed lines.

Tetrakis[1-phenyl-3-(1*H*-1,2,4-triazol-1-yl- κN^4)propan-1- one]bis(thiocyanato- κN)manganese(II)

Crystal data

$[Mn(NCS)_2(C_{11}H_{11}N_3O)_4]$	Z = 1
$M_r = 976.03$	F(000) = 507
Triclinic, <i>P</i> T	$D_{\rm x} = 1.390 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 7.9326 (17) Å	Cell parameters from 1514 reflections
b = 11.845 (3) Å	$\theta = 2.8 - 22.4^{\circ}$
c = 13.740(3) Å	$\mu = 0.43 \text{ mm}^{-1}$
$\alpha = 69.240 \ (3)^{\circ}$	T = 293 K
$\beta = 75.417 \ (3)^{\circ}$	Block, colorless
$\gamma = 81.686 \ (3)^{\circ}$	$0.20\times0.18\times0.14~mm$
$V = 1166.1 (5) \text{ Å}^3$	

Data collection

Bruker APEXII CCD diffractometer	4075 independent reflections
Radiation source: fine-focus sealed tube	2840 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 9$
$T_{\min} = 0.919, T_{\max} = 0.942$	$k = -13 \rightarrow 14$
6410 measured reflections	$l = -14 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.089$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0394P)^2 + 0.0024P]$ where $P = (F_o^2 + 2F_c^2)/3$
4075 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
304 parameters	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$

0 restraints

$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

1 / 40/10/14/14/01/14	e coorainaics ana is	on opic of equivalent	i isoli opie displacel	
	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Mn1	0.0000	0.0000	1.0000	0.03670 (15)
S1	-0.34152 (10)	-0.18300 (7)	0.86875 (6)	0.0709 (2)
01	0.7108 (2)	0.12219 (16)	0.41612 (14)	0.0696 (5)
02	-0.2798 (3)	0.43808 (16)	0.66598 (16)	0.0763 (6)
N1	0.2363 (2)	0.06526 (16)	0.87054 (14)	0.0429 (5)
N2	0.4935 (2)	0.14559 (18)	0.78206 (15)	0.0532 (5)
N3	0.4371 (2)	0.09195 (16)	0.72510 (14)	0.0425 (5)
N4	-0.1390 (2)	0.18782 (15)	0.96560 (14)	0.0413 (5)
N5	-0.2623 (3)	0.36007 (18)	0.99367 (16)	0.0532 (5)
N6	-0.3215 (2)	0.34167 (17)	0.91665 (15)	0.0441 (5)
N7	-0.1117 (3)	-0.03665 (19)	0.88320 (16)	0.0538 (5)
C1	0.2858 (3)	0.0449 (2)	0.77873 (18)	0.0459 (6)
H1	0.2231	0.0031	0.7550	0.055*
C2	0.3686 (3)	0.1270 (2)	0.86777 (19)	0.0524 (6)
H2	0.3708	0.1545	0.9230	0.063*
C3	0.5430 (3)	0.0878 (2)	0.62302 (18)	0.0523 (6)
H3A	0.4815	0.0482	0.5926	0.063*
H3B	0.6517	0.0410	0.6337	0.063*
C4	0.5813 (3)	0.2132 (2)	0.54720 (17)	0.0470 (6)
H4A	0.6465	0.2512	0.5770	0.056*
H4B	0.4721	0.2608	0.5398	0.056*
C5	0.6839 (3)	0.2142 (2)	0.43876 (18)	0.0459 (6)
C6	0.7487 (3)	0.3311 (2)	0.35991 (17)	0.0426 (6)
C7	0.6996 (3)	0.4402 (2)	0.3773 (2)	0.0555 (7)
H7	0.6264	0.4421	0.4413	0.067*
C8	0.7584 (4)	0.5460 (2)	0.3002 (2)	0.0638 (7)
H8	0.7225	0.6192	0.3121	0.077*
C9	0.8682 (3)	0.5450 (3)	0.2070 (2)	0.0633 (7)
Н9	0.9077	0.6173	0.1558	0.076*
C10	0.9208 (3)	0.4378 (3)	0.1883 (2)	0.0645 (8)
H10	0.9964	0.4368	0.1247	0.077*
C11	0.8608 (3)	0.3315 (2)	0.26470 (19)	0.0546 (7)
H11	0.8963	0.2587	0.2520	0.066*
C12	-0.2476 (3)	0.2397 (2)	0.90146 (18)	0.0429 (6)
H12	-0.2693	0.2090	0.8524	0.051*
C13	-0.1537 (3)	0.2650 (2)	1.02034 (19)	0.0506 (6)
H13	-0.0918	0.2519	1.0729	0.061*
C14	-0.4552 (3)	0.4253 (2)	0.8686 (2)	0.0570(7)
H14A	-0.5458	0.4428	0.9245	0.068*
H14B	-0.5080	0.3868	0.8329	0.068*
C15	-0.3844 (3)	0.5427 (2)	0.78923 (19)	0.0509 (6)
H15A	-0.4804	0.6033	0.7789	0.061*
H15B	-0.3055	0.5701	0.8188	0.061*

C16	-0.2891 (3)	0.5332 (2)	0.6827 (2)	0.0509 (6)
C17	-0.2102 (3)	0.6418 (2)	0.59709 (19)	0.0479 (6)
C18	-0.2121 (3)	0.7519 (2)	0.6130 (2)	0.0607 (7)
H18	-0.2654	0.7599	0.6789	0.073*
C19	-0.1353 (4)	0.8486 (3)	0.5314 (2)	0.0715 (8)
H19	-0.1376	0.9217	0.5427	0.086*
C20	-0.0561 (4)	0.8392 (3)	0.4342 (2)	0.0702 (8)
H20	-0.0043	0.9054	0.3797	0.084*
C21	-0.0530 (4)	0.7320 (3)	0.4172 (2)	0.0764 (9)
H21	0.0011	0.7249	0.3510	0.092*
C22	-0.1298 (3)	0.6347 (3)	0.4978 (2)	0.0637 (7)
H22	-0.1277	0.5623	0.4851	0.076*
C23	-0.2068 (3)	-0.0969 (2)	0.87534 (17)	0.0438 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0344 (3)	0.0396 (3)	0.0321 (3)	-0.0090 (2)	-0.0024 (2)	-0.0078 (2)
S1	0.0835 (5)	0.0780 (5)	0.0643 (5)	-0.0293 (4)	-0.0104 (4)	-0.0341 (4)
01	0.0930 (14)	0.0559 (12)	0.0517 (12)	-0.0116 (10)	0.0070 (10)	-0.0209 (10)
02	0.0934 (14)	0.0546 (12)	0.0837 (15)	-0.0020 (10)	-0.0071 (11)	-0.0356 (11)
N1	0.0423 (11)	0.0464 (12)	0.0356 (12)	-0.0131 (9)	-0.0017 (9)	-0.0090 (9)
N2	0.0519 (12)	0.0649 (14)	0.0437 (13)	-0.0276 (11)	0.0015 (10)	-0.0180 (11)
N3	0.0439 (11)	0.0465 (11)	0.0342 (11)	-0.0125 (9)	-0.0007 (9)	-0.0115 (9)
N4	0.0461 (12)	0.0391 (11)	0.0368 (11)	-0.0063 (9)	-0.0088 (9)	-0.0091 (9)
N5	0.0671 (14)	0.0482 (13)	0.0480 (13)	0.0001 (11)	-0.0184 (11)	-0.0179 (11)
N6	0.0433 (11)	0.0417 (12)	0.0448 (12)	-0.0033 (9)	-0.0111 (9)	-0.0099 (10)
N7	0.0488 (12)	0.0645 (14)	0.0515 (13)	-0.0091 (11)	-0.0147 (10)	-0.0184 (11)
C1	0.0445 (14)	0.0532 (15)	0.0390 (14)	-0.0148 (11)	-0.0065 (11)	-0.0113 (12)
C2	0.0595 (16)	0.0612 (16)	0.0376 (14)	-0.0266 (13)	0.0029 (12)	-0.0179 (12)
C3	0.0522 (15)	0.0573 (16)	0.0398 (14)	-0.0100 (12)	0.0057 (12)	-0.0152 (12)
C4	0.0445 (14)	0.0537 (15)	0.0349 (13)	-0.0037 (11)	-0.0013 (11)	-0.0098 (12)
C5	0.0429 (14)	0.0518 (15)	0.0395 (14)	-0.0015 (12)	-0.0063 (11)	-0.0134 (12)
C6	0.0405 (13)	0.0533 (15)	0.0322 (13)	-0.0052 (11)	-0.0080 (11)	-0.0110 (11)
C7	0.0627 (17)	0.0549 (17)	0.0412 (15)	-0.0019 (13)	-0.0043 (13)	-0.0120 (13)
C8	0.081 (2)	0.0497 (16)	0.0557 (18)	-0.0065 (14)	-0.0147 (16)	-0.0108 (14)
C9	0.0639 (18)	0.0649 (19)	0.0529 (18)	-0.0242 (15)	-0.0152 (14)	0.0000 (15)
C10	0.0645 (18)	0.082 (2)	0.0379 (15)	-0.0223 (16)	0.0035 (13)	-0.0123 (15)
C11	0.0609 (16)	0.0605 (17)	0.0402 (15)	-0.0095 (13)	-0.0027 (12)	-0.0174 (13)
C12	0.0432 (14)	0.0435 (14)	0.0420 (14)	-0.0090 (11)	-0.0056 (11)	-0.0143 (12)
C13	0.0664 (17)	0.0460 (15)	0.0431 (15)	-0.0026 (13)	-0.0194 (13)	-0.0142 (12)
C14	0.0443 (15)	0.0577 (17)	0.0664 (18)	0.0029 (13)	-0.0162 (13)	-0.0167 (14)
C15	0.0532 (15)	0.0448 (14)	0.0529 (16)	0.0092 (12)	-0.0183 (13)	-0.0141 (13)
C16	0.0512 (15)	0.0448 (15)	0.0614 (17)	0.0087 (12)	-0.0222 (13)	-0.0208 (14)
C17	0.0501 (14)	0.0457 (15)	0.0496 (15)	0.0125 (12)	-0.0206 (12)	-0.0172 (12)
C18	0.0799 (19)	0.0510 (16)	0.0476 (16)	0.0053 (14)	-0.0106 (14)	-0.0177 (14)
C19	0.090 (2)	0.0491 (17)	0.069 (2)	0.0007 (15)	-0.0149 (18)	-0.0154 (16)
C20	0.0660 (18)	0.068 (2)	0.0579 (19)	0.0036 (15)	-0.0109 (15)	-0.0029 (16)

C21	0.071 (2)	0.088 (2)	0.0564 (19)	0.0139 (18)	-0.0056 (16)	-0.0210 (18)
C22	0.0677 (18)	0.0635 (18)	0.0621 (19)	0.0128 (15)	-0.0150 (15)	-0.0294 (16)
C23	0.0484 (15)	0.0493 (15)	0.0325 (13)	0.0019 (12)	-0.0090 (11)	-0.0139 (11)
Geometric para	meters (Å, °)					
Mn1—N7		2.207 (2)	C7—	C8	1.37	5 (3)
Mn1—N1		2.2452 (17)	C7—	H7	0.93	00
Mn1—N4		2.2796 (18)	C8—	С9	1.35	8 (4)
S1—C23		1.619 (3)	C8—	H8	0.93	00
O1—C5		1.212 (3)	С9—	C10	1.37	0 (4)
O2—C16		1.216 (3)	С9—	Н9	0.93	00
N1—C1		1.320 (3)	C10–	C11	1.37	8 (3)
N1—C2		1.349 (3)	C10–	-H10	0.93	00
N2—C2		1.307 (3)	C11–	-H11	0.93	00
N2—N3		1.352 (2)	C12–	-H12	0.93	00
N3—C1		1.323 (3)	C13–	-H13	0.93	00
N3—C3		1.456 (3)	C14	-C15	1.51	0(3)
N4—C12		1.320 (3)	C14-	-HI4A	0.97	00
N4		1.352 (3)	C14-	-H14B	0.97	00
N5		1.313(3)	C15-	-010	1.50	4(3)
$N_{\rm M} = N_{\rm M}$		1.335(2) 1.326(3)	C15-	-птэа - нтэр	0.97	00
N6-C14		1.320(3) 1 459(3)	C15=		1.49	0.00
N7-C23		1.459(3)	C17-	-C22	1.38	0(3)
C1—H1		0.9300	C17-	-C18	1.30	3 (3)
C2—H2		0.9300	C18-	-C19	1.37	4 (4)
C3—C4		1.503 (3)	C18–	-H18	0.93	00
С3—НЗА		0.9700	C19–	C20	1.36	1 (4)
С3—Н3В		0.9700	C19–	-H19	0.93	00
C4—C5		1.504 (3)	C20–	C21	1.36	7 (4)
C4—H4A		0.9700	C20–	-H20	0.93	00
C4—H4B		0.9700	C21-	C22	1.37	3 (4)
C5—C6		1.490 (3)	C21-	-H21	0.93	00
C6—C7		1.380 (3)	C22–	–H22	0.93	00
C6—C11		1.383 (3)				
N7—Mn1—N7 ⁱ		180.0	C8—	С7—Н7	119.	9
N7—Mn1—N1 ⁱ		91.32 (7)	C6—	С7—Н7	119.	9
$N7^{i}$ — $Mn1$ — $N1^{i}$		88.68 (7)	С9—	C8—C7	120.	8 (3)
N7—Mn1—N1		88.68 (7)	С9—	С8—Н8	119.	6
N7 ⁱ —Mn1—N1		91.32 (7)	C7—	С8—Н8	119.	6
N1 ⁱ —Mn1—N1		180.0	C8—	C9—C10	120.	1 (3)
N7—Mn1—N4 ⁱ		89.00 (7)	C8—	С9—Н9	119.	9
N7 ⁱ —Mn1—N4 ⁱ		91.00 (7)	C10–	-С9—Н9	119.	9
$N1^{i}$ — $Mn1$ — $N4^{i}$		93.23 (6)	С9—	C10—C11	119.4 (2)	
N1—Mn1—N4 ⁱ		86.77 (6)	С9—	С10—Н10	120.	3
N7—Mn1—N4		91.00 (7)	C11–	-С10-Н10	120.	3

N7 ⁱ —Mn1—N4	89.00 (7)	C10—C11—C6	121.2 (2)
N1 ⁱ —Mn1—N4	86.77 (6)	C10-C11-H11	119.4
N1—Mn1—N4	93.23 (6)	C6—C11—H11	119.4
$N4^{i}$ —Mn1—N4	180.000(1)	N4—C12—N6	110.5 (2)
C1—N1—C2	102.08 (18)	N4—C12—H12	124.7
C1—N1—Mn1	127.56 (15)	N6—C12—H12	124.7
C2—N1—Mn1	130.23 (15)	N5—C13—N4	115.0 (2)
C2—N2—N3	102.28 (18)	N5—C13—H13	122.5
C1—N3—N2	109.70 (18)	N4—C13—H13	122.5
C1—N3—C3	129.7 (2)	N6-C14-C15	112.91 (19)
N2—N3—C3	120.58 (18)	N6—C14—H14A	109.0
C12—N4—C13	102.41 (19)	C15-C14-H14A	109.0
C12—N4—Mn1	129.36 (15)	N6	109.0
C13—N4—Mn1	127.34 (15)	C15—C14—H14B	109.0
C13—N5—N6	102.19 (19)	H14A—C14—H14B	107.8
C12—N6—N5	109.89 (19)	C16—C15—C14	113.7 (2)
C12—N6—C14	130.0 (2)	C16—C15—H15A	108.8
N5—N6—C14	120.02 (19)	C14—C15—H15A	108.8
C23—N7—Mn1	143.02 (18)	C16—C15—H15B	108.8
N1—C1—N3	110.6 (2)	C14—C15—H15B	108.8
N1—C1—H1	124.7	H15A—C15—H15B	107.7
N3—C1—H1	124.7	O2—C16—C17	120.4 (2)
N2-C2-N1	115.3 (2)	O2-C16-C15	120.1 (2)
N2—C2—H2	122.3	C17—C16—C15	119.5 (2)
N1—C2—H2	122.3	C22—C17—C18	117.7 (2)
N3—C3—C4	110.74 (19)	C22—C17—C16	119.6 (2)
N3—C3—H3A	109.5	C18—C17—C16	122.7 (2)
С4—С3—Н3А	109.5	C19—C18—C17	120.1 (3)
N3—C3—H3B	109.5	C19—C18—H18	119.9
С4—С3—Н3В	109.5	C17—C18—H18	119.9
НЗА—СЗ—НЗВ	108.1	C20—C19—C18	121.1 (3)
C3—C4—C5	112.8 (2)	С20—С19—Н19	119.4
С3—С4—Н4А	109.0	С18—С19—Н19	119.4
С5—С4—Н4А	109.0	C19—C20—C21	119.6 (3)
C3—C4—H4B	109.0	С19—С20—Н20	120.2
C5—C4—H4B	109.0	C21—C20—H20	120.2
H4A—C4—H4B	107.8	C20—C21—C22	120.0 (3)
O1—C5—C6	121.1 (2)	C20—C21—H21	120.0
O1—C5—C4	120.6 (2)	C22—C21—H21	120.0
C6—C5—C4	118.3 (2)	C21—C22—C17	121.5 (3)
C7—C6—C11	118.2 (2)	C21—C22—H22	119.3
C7—C6—C5	122.6 (2)	С17—С22—Н22	119.3
C11—C6—C5	119.2 (2)	N7—C23—S1	178.0 (2)
C8—C7—C6	120.3 (2)		
N7—Mn1—N1—C1	-17.61 (19)	O1—C5—C6—C7	170.4 (2)
N7 ⁱ —Mn1—N1—C1	162.39 (19)	C4—C5—C6—C7	-8.7 (3)
N4 ⁱ —Mn1—N1—C1	71.47 (19)	O1—C5—C6—C11	-8.7 (3)
N4—Mn1—N1—C1	-108.53 (19)	C4—C5—C6—C11	172.2 (2)

N7—Mn1—N1—C2	167.2 (2)	C11—C6—C7—C8	1.4 (4)		
N7 ⁱ —Mn1—N1—C2	-12.8 (2)	C5—C6—C7—C8	-177.7 (2)		
N4 ⁱ —Mn1—N1—C2	-103.7 (2)	C6—C7—C8—C9	-1.4 (4)		
N4—Mn1—N1—C2	76.3 (2)	C7—C8—C9—C10	0.5 (4)		
C2—N2—N3—C1	-0.3 (3)	C8—C9—C10—C11	0.3 (4)		
C2—N2—N3—C3	-177.8 (2)	C9—C10—C11—C6	-0.1 (4)		
N7—Mn1—N4—C12	2.65 (19)	C7—C6—C11—C10	-0.7 (4)		
N7 ⁱ —Mn1—N4—C12	-177.35 (19)	C5—C6—C11—C10	178.5 (2)		
N1 ⁱ —Mn1—N4—C12	-88.62 (19)	C13—N4—C12—N6	0.3 (2)		
N1-Mn1-N4-C12	91.38 (19)	Mn1-N4-C12-N6	170.01 (13)		
N7-Mn1-N4-C13	169.91 (18)	N5—N6—C12—N4	-0.2 (2)		
N7 ⁱ —Mn1—N4—C13	-10.09 (18)	C14—N6—C12—N4	-176.4 (2)		
N1 ⁱ —Mn1—N4—C13	78.64 (18)	N6—N5—C13—N4	0.3 (3)		
N1-Mn1-N4-C13	-101.36 (18)	C12—N4—C13—N5	-0.4 (3)		
C13—N5—N6—C12	0.0 (2)	Mn1—N4—C13—N5	-170.35 (15)		
C13—N5—N6—C14	176.6 (2)	C12-N6-C14-C15	-107.7 (3)		
N1 ⁱ —Mn1—N7—C23	-27.0 (3)	N5-N6-C14-C15	76.5 (3)		
N1—Mn1—N7—C23	153.0 (3)	N6-C14-C15-C16	77.9 (3)		
N4 ⁱ —Mn1—N7—C23	66.2 (3)	C14—C15—C16—O2	2.3 (3)		
N4—Mn1—N7—C23	-113.8 (3)	C14-C15-C16-C17	-179.2 (2)		
C2—N1—C1—N3	-0.3 (3)	O2-C16-C17-C22	1.5 (4)		
Mn1—N1—C1—N3	-176.47 (14)	C15—C16—C17—C22	-177.0 (2)		
N2—N3—C1—N1	0.4 (3)	O2-C16-C17-C18	-177.9 (2)		
C3—N3—C1—N1	177.6 (2)	C15—C16—C17—C18	3.6 (3)		
N3—N2—C2—N1	0.2 (3)	C22-C17-C18-C19	-0.2 (4)		
C1—N1—C2—N2	0.0 (3)	C16-C17-C18-C19	179.2 (2)		
Mn1—N1—C2—N2	176.10 (16)	C17—C18—C19—C20	-0.2 (4)		
C1—N3—C3—C4	125.4 (2)	C18-C19-C20-C21	0.2 (4)		
N2—N3—C3—C4	-57.7 (3)	C19—C20—C21—C22	0.1 (4)		
N3—C3—C4—C5	-177.45 (19)	C20-C21-C22-C17	-0.5 (4)		
C3—C4—C5—O1	8.0 (3)	C18—C17—C22—C21	0.5 (4)		
C3—C4—C5—C6	-172.95 (19)	C16—C17—C22—C21	-178.9 (2)		
Symmetry codes: (i) $-x$, $-y$, $-z+2$.					
Hydrogen-bond geometry (Å, °)					

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C12—H12···N2 ⁱⁱ	0.93	2.62	3.436 (3)	146
C18—H18···S1 ⁱⁱⁱ	0.93	2.82	3.725 (3)	164
Symmetry codes: (ii) $x-1$, y , z ; (iii) x , $y+1$, z .				

Fig. 2